Highlight Review

Metal Ion-coupled Electron-transfer Reduction of Dioxygen

Shunichi Fukuzumi

(Received April 11, 2008; CL-088005)

Abstract

Metal ion-coupled and proton-coupled electron-transfer reactions of dioxygen is described for one-electron, two-electron, and four-electron reduction of dioxygen by one-electron reductants such as ferrocene derivatives as well as by two-electron reductants such as NADH analogs. The catalytic mechanism of the four-electron reduction of dioxygen with cofacial dicobalt porphyrins has been clarified based on the detailed kinetic study and the detection of the intermediate.

Introduction

Binding of metal ions to radical anions of electron acceptors results in significant positive shifts of the one-electron reduction potentials of electron acceptors.1,2 Uphill electron-transfer reactions, which are thermodynamically infeasible to occur, are made possible by the presence of metal ions provided that the strong binding of metal ions to radical anions of electron acceptors changes the energetics of electron transfer from uphill to $downhill^{1,2}$ In such a case metal ions can promote electrontransfer reactions, which would otherwise be impossible to occur.1–3 This is defined herein as metal ion-coupled electron transfer (MCET) in analogy of proton-coupled electron transfer (PCET), which plays pivotal roles in biological electron-transfer systems such as photosynthesis and respiration.^{4,5}

MCET is particularly important for the electron-transfer reduction of dioxygen (O_2) , because electron transfer is only the spin-allowed process of the reactions of O_2 , which is triplet in the ground state, with singlet molecules. The highly exergonic four-electron reduction of $O₂$ to water, which is the reverse process of photosynthesis, maintains the life of an aerobic organism by the respiration.^{6–8} Cytochrome c oxidases (CcOs) are responsible for catalyzing the reduction of $O₂$ to water by the soluble electron carrier, cytochrome c .^{6–8} The X-ray structures of CcOs have revealed that the catalytic site of CcOs consists of the bimetallic complex of heme and Cu, where the distance between Fe and Cu has been reported as 4.5 Å in the absence of O_2 .^{9,10} A number of synthetic analogs of the CcO active site have been synthesized to mimic the coordination environment of the Fe/Cu core as well as the catalytic function.11–13 The four-electron reduction of O_2 is not only of great biological interest but also of technological significance such as fuel cells.^{14–16}

The most important question is how the CcO enzyme catalyzes the four-electron reduction of $O₂$ to water without releasing the two-electron-reduced species (H_2O_2) . This Highlight Review focuses on the MCET and PCET mechanisms of oneelectron, two-electron, and four-electron reduction of O_2 in homogeneous solutions.

One-electron Reduction of $O₂$ by Oneelectron Reductants

The promoting effects of metal ions on electron transfer from one-electron reductants to oxygen are certainly related to the Lewis acidity of metal ions. $¹$ Charges and ion radii are im-</sup> portant factors to determine the Lewis acidity of metal ions.17 The binding energies of a variety of metal ions with superoxide ion $(O_2^{\bullet -})$ can be readily derived from the g_{zz} values of the ESR spectra of the superoxide–metal ion complexes $(O_2^{\bullet -}/M^{n+})$, providing the quantitative measure of Lewis acidity of the metal ions (vide infra).¹⁸

The O_2 ⁻⁻/Mⁿ⁺ complex is produced by the photoinduced electron-transfer reduction of O_2 by a dimeric 1-benzyl-1,4-dihydronicotinamide $[(BNA)_2]^{19}$ in acetonitrile (MeCN). When an oxygen-saturated MeCN solution containing $(BNA)_2$ was irradiated with a high-pressure mercury lamp, O_2 ⁻⁻ formed photochemically is detected by the ESR spectrum in frozen MeCN at 143 K. The ESR spectrum shows a typical anisotropic signal with $g_{\ell} = 2.090$ and $g_{\perp} = 2.005^{20}$ The g_{zz} values of O_2 ⁻⁻/ $Mⁿ⁺$ complexes produced in the presence of a variety of closed shell metal ions become significantly smaller than the value of O_2 ⁻⁻ due to the binding of metal ions to O_2 ⁻⁻ $(O_2$ ⁻⁻/Mⁿ⁺, $n = 1-3$). The deviation of the g_{zz} value from the free spin value ($g_e = 2.0023$) is caused by the spin–orbit interaction as given by eq $1,^{21,22}$ where λ is the spin–orbit coupling constant (0.014 eV) ,²³ and ΔE is the energy splitting of π_{g} levels due to the biding of M^{n+} to O_2 ⁻⁻.

$$
\Delta E = (g_{zz} - g_e)/2\lambda \tag{1}
$$

The ΔE value obtained from the deviation of the g_{zz} value from the free spin value increases in order: monovalent cations (M^+) < divalent cations (M^{2+}) < trivalent cations (M^{3+}) .¹⁸ The ΔE value also increases with decreasing the ionic radius when the oxidation state of the metal ion is the same. The same trend has been reported for O_2 ⁻⁻ adsorbed on the surface of various metal oxides. $24,25$ Scandium ion, which has the smallest ionic radius among the trivalent metal cations, gives the largest ΔE value.¹⁸

The promoting effects of metal ions on electron transfer from Co(TPP) (TPP = tetraphenylporphyrin dianion) to O_2 were examined in the presence of a series of metal ions $(Mⁿ⁺,$ $n = 1-3$) by the UV–vis spectral change for the decay of Co(TPP) ($\lambda_{\text{max}} = 411 \text{ nm}$) and the formation of [Co(TPP)]⁺ $(\lambda_{\text{max}} = 434 \text{ nm})$ in MeCN at 298 K.¹⁸ No electron transfer from Co(TPP) ($E_{ox} = 0.35$ V vs. SCE in MeCN)²⁶ to O₂ (E_{red}) -0.86 V vs. SCE in MeCN)²⁷ has occurred in MeCN at 298 K. In the presence of M^{n+} , however, an efficient electron transfer from Co(TPP) to O_2 occurs to yield $[Co(TPP)]^+$ (Scheme 1).¹⁸

Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 SORST, Japan Science and Technology Agency, Suita, Osaka 565-0871 E-mail: fukuzumi@chem.eng.osaka-ac.jp

Scheme 1. MCET from Co(TPP) to O_2 in the presence of $M^{n+}.^{18}$

The MCET rates obeyed second-order kinetics, showing a first-order dependence on the concentration of each reactant, O_2 and $Co(TPP)$.¹⁸ The observed second-order rate constant (k_{obs}) increases linearly with increasing metal ion concentration.¹⁸ This confirms that the binding of M^{n+} to O_2 ⁻⁻ is indeed coupled with electron transfer (MCET), when MCET occurs in a concerted manner rather than a stepwise manner. If the ratedetermining step were a uphill electron transfer from Co(TPP) to O_2 , followed by rapid binding of M^{n+} to $O_2^{\bullet -}$, the ET rate would be independent of metal ion concentration.

From the slopes of the linear plots of k_{obs} vs. $[M^{n+}]$ were determined the MCET rate constants (k_{MCET}) . There is a striking linear correlation between $\log k_{MCET}$ and the ΔE values of O_2 ⁻⁻/Mⁿ⁺ derived from the g_{zz} values as shown in Figure 1, where the data for organotin compounds and scandium complexes acting as Lewis acids are included.²⁸ The remarkable correlation spans a range of more than $10⁷$ in the rate constant. The slope of the linear correlation between $\log k_{\text{MGET}}$ and ΔE is determined to be 14.0, which is close to the value of $1/2.3k_BT$ (=16.9, where k_B is the Boltzmann constant and $T = 298$ K).²⁸ This means that the variation of ΔE is directly reflected on the difference in the activation free energy for MCET from Co(TPP) to O_2 . The stronger the binding of M^{n+} with $O_2^{\bullet -}$, the faster becomes the MCET rate.

Two-electron Reduction of $O₂$ by Oneelectron Reductants

No electron transfer occurs from ferrocene derivatives to $O₂$

Figure 1. Plot of log k_{et} vs. ΔE in MCET from Co(TPP) to O_2 in the presence of metal ions (triflate or perchlorate salts) (\circlearrowright) and organotin compounds and scandium complexes (\bullet) in MeCN at 298 K. Numbers refer to a variety of organotin compounds in ref 28.

in the presence of $HCIO₄$ in benzonitrile (PhCN) or MeCN at 298 K.^{26,29} The addition of cobalt porphyrin catalysts to an airsaturated PhCN or MeCN solution of ferrocene derivatives with HClO⁴ results in efficient electron transfer from ferrocene derivatives to O_2 .^{26,29} The formation of ferricenium ion derivatives was monitored by rise in absorbance at 620–700 nm. As soon as the reaction is started, $Co(OEP)$ (OEP = octaethylporphyrin dianion) is oxidized to $[Co(OEP)]^+$ which remains virtually the same during the reaction.²⁹ This indicates that the catalytic steady state is established during the reaction. The concentration of ferricenium ion (e.g., $[Fe(C_5H_4Me)_2]^+$) formed in the Co(OEP)-catalyzed reduction of O_2 by Fe(C₅H₄Me)₂ is twice that of the $O₂$ concentration. Thus, only two-electron reduction of O² occurs and no further reduction proceeds to produce more than two equivalents of $[Fe(C_5H_4Me)_2]^+$ (eq 2). It was confirmed that H_2O_2 was formed in the two-electron reduction of O_2 by iodometric measurements.^{26,29}

$$
2Fe(C5H4Me)2 + O2 + 2H+
$$

$$
\xrightarrow[CO(OEP) 2[Fe(C5H4Me)2]+ + H2O2
$$
 (2)

The rate of formation of $[Fe(C₅H₅)₂]$ ⁺ in Co(OEP)-catalyzed two-electron reduction of O_2 by Fe(C_5H_5)₂ in the presence of HClO⁴ in O2-saturated PhCN at 298 K obeyed pseudo-firstorder kinetics. The pseudo-first-order rate constant (k_{obs}) increases linearly with an increase in the catalyst concentration (Figure 2a). The second-order catalytic rate constant (k_{cat}) remains constant with the change in O_2 and $HClO_4$ concentrations (Figures 2b and 2c).²⁹ The k_{cat} values determined from formation of $[Fe(C_5H_5)_2]^+$ and $[Fe(C_5H_4Me)_2]^+$ in the Co(OEP)-catalyzed reduction of O_2 by Fe(C_5H_5)₂ and Fe(C_5H_4Me)₂ are twice of the k_{et} values of electron transfer from Fe(C₅H₅)₂ and Fe(C₅H₄Me)₂ to $[Co^{III}(OEP)]^+$ in the absence of O_2 , respectively.²⁹ This indicates that the turnover-determining step (t.d.s.) for the catalytic two-electron reduction of O_2 is the electron-transfer step from

Figure 2. (a) Plot of k_{obs} vs. [Co(OEP)] for the Co(OEP)catalyzed two-electron reduction of O_2 by $Fe(C_5H_5)_2$ in the presence of HClO₄ in PhCN at 298 K.²⁹ (b) Plot of k_{cat} vs. [HClO₄].²⁹ (c) Plot of k_{cat} vs. $[O_2]$.²⁹

Scheme 2. Co(OEP)-catalyzed two-electron reduction of O_2 in the presence of $HClO₄.²⁹$

ferrocene derivatives to $[Co^{III}(OEP)]^+$ as shown in Scheme 2. In such a case the rate of formation of ferricenium ions is given by eq 3, where the catalytic rate constant (k_{cat}) corresponds to $2k_{et}$.

$$
d[Fe(C5H5)2+]/dt = 2ket[Fe(C5H5)2][Co(OEP)]
$$
 (3)

Electron transfer from $\text{Fe}(C_5H_5)_2$ to $[Co^{III}(OEP)]^+$ occurs, followed by fast electron transfer from $Co^H(OEP)$ to $O₂$ in the presence of an acid to produce the $[Co^{III}(OEP)O₂H]⁺$, which is further reduced by $Fe(C_5H_5)_2$ in the presence of HClO₄ to produce H_2O_2 , accompanied by regeneration of $[Co^{III}(OEP)]^+$. The catalytic mechanism of two-electron reduction of O_2 in Scheme 2 is virtually the same as that reported for Co(TPP)-catalyzed two-electron reduction of O_2 by ferrocene derivatives.²⁶

The catalytic two-electron reduction of $O₂$ also occurs with cobalt corroles as well as cobalt porphyrins in PhCN.³⁰ The addition of [10-pentafluorophenyl-5,15-dimesitylcorrole] cobalt $[(F_5PhMes_2Cor)Co]$ to an air-saturated PhCN solution of $Fe(C_5H_4Me)_2$ and $HClO_4$ resulted in efficient oxidation of ferrocene by O_2 . Only the two-electron reduction of O_2 occurs and there is no further reduction to produce more than two equivalents of $[Fe(C_5H_4Me)_2]^+$ (Scheme 3).³¹ Electron transfer from $Fe(C_5H_4Me)_2$ $(E_{ox} = 0.29 V$ vs. $SCE)^{26}$ to $[(F_5PhMes_2Cor)Co]^+$ $(E_{red} = 0.38 \text{ V})^{30}$ occurs efficiently to produce $[Fe(C_5H_4Me)_2]^+$ and $(F_5PhMes_2Cor)Co.^31$ The cobalt(III) corrole complex $[(F_5PhMes_2Cor)Co]$ can reduce O_2 in the presence of HClO4. The site of electron transfer was examined by ESR characterization of the singly oxidized cobalt corrole.³¹ The observed g value (2.0032) of the singly oxidized cobalt corrole, obtained by the chemical oxidation of $(F_5PhMes_2Cor)Co$ with one equivalent of $[Fe(bpy)_3]^{3+}$ $(by = 2,2'-bipyridine)$, is characteristic of an organic radical; it is quite different from the large g value (2.037) observed for cobalt(IV) porphyrin complexes.³² Thus, the singly oxidized species is assigned as cobalt(III) corrole radical cation rather than cobalt(IV) corrole. In contrast to the case of cobalt porphyrins (Scheme 2), cobalt corroles act as effective catalysts in the reduction of O_2 with $HClO_4$ via the redox couple between cobalt(III) corroles and cobalt(III) corrole radical cations (Scheme 3).³¹

Four-electron Reduction of $O₂$ by Oneelectron Reductants

When monomeric cobalt porphyrins are replaced by cofacial dicobalt porphyrins, the four-electron reduction of O_2 by ferro-

Scheme 3. $(F_5PhMes_2Cor)Co-catalyzed$ two-electron reduction of O_2 in the presence of HClO₄.³¹

Scheme 4. Catalytic four-electron reduction of $O₂$ by a ferrocene derivative with cofacial dicobalt porphyrins.²⁹

cene derivatives occurs efficiently in the presence of HClO₄ in PhCN as shown in Scheme $4.^{29}$

When a cofacial dicobalt porphyrin $[Co₂(DPX)]$ is used as a catalyst instead of a monomeric cobalt porphyrin Co(OEP), the concentration of $[Fe(C_5H_4Me)_2]^+$ formed in the Co₂(DPX)catalyzed reduction of O_2 by $Fe(C_5H_4Me)_2$ is four times of O_2 concentration.²⁹ Thus, the four-electron reduction of O_2 by $Fe(C_5H_4Me)_2$ occurs efficiently in the presence of a catalytic amount of $Co₂(DPX)$ and $HClO₄$ in PhCN (eq 4). It was confirmed that no H_2O_2 was formed in the catalytic reduction of O₂ by Fe(C₅H₄Me)₂.²⁹

$$
4Fe(C5H4Me)2 + O2 + 4H+
$$

\n
$$
\xrightarrow[CO<2(DPX)] 4[Fe(C5H4Me)2]+ + 2H2O
$$
 (4)

The other cofacial dicobalt porphyrins $[Co₂(DPA)$, $Co₂(DPB)$, and $Co₂(DPD)$] also catalyze the reduction of $O₂$ by $Fe(C_5H_4Me)_2$, but the amount of $[Fe(C_5H_4Me)_2]^+$ formed was less than four equivalents of O_2 .²⁹ Thus, the clean four-electron reduction of O_2 by Fe(C₅H₄Me)₂ occurs only in the case of $Co₂(DPX)$ used as a catalyst.

Based on the detailed kinetic comparison of the catalytic reactivities of cofacial dicobalt porphyrins and a monomeric cobalt porphyrin together with the detection of the reactive intermediates by ESR, the catalytic mechanism of four-electron reduction of O_2 by ferrocene derivatives is summarized as shown in Scheme 5. The initial electron transfer from ferrocene derivatives to the Co^{III} – Co^{III} complex gives the Co^{II} – Co^{III} complex, which reacts with O_2 , accompanied by the reduction by ferrocene derivatives, to produce the Co^{III} – O_2 – Co^{III} complex. The heterolytic O–O bond cleavage of the Co^{III} – O_2 – Co^{III} complex affords the high-valent cobalt(IV) oxo porphyrin π -radical cation, which is further reduced by ferrocene derivatives in the pres-

Scheme 5. The catalytic mechanism of four-electron reduction of O_2 by ferrocene with a cofacial cobalt porphyrin.²⁹

ence of proton to yield H_2O (Scheme 5).²⁹ The critical point to distinguish between the two-electron and four-electron reduction pathways is formation of the μ -peroxo Co^{III}–O₂–Co^{III} complex, which requires an appropriate Co–Co distance in the cofacial dicobalt complex. The Co–Co distance in $Co_2(DPX)$ is best suited for formation of the μ -peroxo Co^{III}–O₂–Co^{III} complex, resulting in the catalytic four-electron reduction of O_2 .²⁹ In the case of monomeric cobalt porphyrins such as Co(TPP) and Co(OEP), there is no way to form the μ -peroxo Co^{III}–O₂–Co^{III} complex, resulting in only the two-electron reduction of O_2 .²⁹

Thus, the interaction of two cobalt nuclei with an active form of oxygen is essential for the four-electron reduction of $O₂$. The μ -superoxo species of cofacial dicobalt porphyrins are produced by the reactions of cofacial dicobalt(II) porphyrins with O_2 in the presence of a bulky base (1-tert-butyl-5-phenylimidazole) and the subsequent one-electron oxidation of the resulting peroxo species by iodine.²⁹ The superhyperfine structure due to two equivalent cobalt nuclei is observed at room temperature in the ESR spectrum of the μ -superoxo species as shown in Figure 3.²⁹ The superhyperfine coupling constant of the μ superoxo species of $Co₂(DPX)$ determined from the computer simulation (Figure 3) is the largest among those of cofacial dicobalt porphyrins.²⁹ This suggests that the efficient catalysis of $Co₂(DPX)$ for the four-electron reduction of $O₂$ by ferrocene derivatives results from the strong binding of the reduced oxygen with $Co₂(DPX)$ which has the most suitable distance between two cobalt nuclei for the oxygen binding.²⁹

The rate of formation of $[Fe(C₅H₅)₂]$ ⁺ in Co₂(DPX)catalyzed four-electron reduction of O_2 by $Fe(C_5H_5)_2$ in the presence of $0.05 M$ HClO₄ in O₂-saturated PhCN at 298 K also obeyed pseudo-first-order kinetics. The pseudo-first-order rate constant (k_{obs}) increases with increasing the catalyst concentration of $Co_2(DPX).^{29}$ The k_{cat} values increase linearly with increasing concentrations of HClO₄ and O_2 .²⁹ Such a linear dependence of k_{cat} on [HClO₄] and [O₂] shows sharp contrast with the case of the Co(OEP)-catalyzed two-electron reduction

Figure 3. ESR spectrum of the μ -superoxo complex (ca. 10^{-3} mol dm⁻³) produced by adding iodine (ca. 10^{-3} mol dm⁻ 3) to an air-saturated PhCN solution of $Co_2(DPX)$ (5 \times 10⁻³ mol dm⁻³) in the presence of 1-tert-butyl-5-phenylimidazole $(5 \times 10^{-3} \,\mathrm{mol} \,\mathrm{dm}^{-3})$ at 298 K.²⁹

of O_2 by Fe(C₅H₅)₂ in Figure 2, where the k_{cat} values remain constant irrespective of HClO₄ or O_2 concentration. This indicates that the PCET from $Co^{III}Co^{II}(DPX)^+$, which is produced in the initial electron transfer from $Fe(C_5H_5)_2$ and to $Co^{III} (DPX)_2^+$, to O_2 is the turnover-determining step (t.d.s.) in the catalytic four-electron reduction of O_2 in Scheme 5.

When $Fe(C_5H_5)_2$ is replaced by a much stronger reductant, that is Fe(C₅Me₅)₂, the kinetics of formation of $[Fe(C_5Me_5)_2]^+$ changes drastically from pseudo-first-order kinetics in the case of Fe(C_5H_5) to zero-order kinetics as shown in Figure 4a, where the rate remains constant irrespective of concentration of $Fe(C_5Me_5)_2$ ²⁹ The zero-order rate constant increases linearly with increasing the catalyst concentration (Figure 4b), but remains constant with variation of concentrations of HClO⁴ and O_2 as shown in Figures 4c and 4d, respectively.²⁹ This indicates that the turnover-determining step changes from the proton-coupled electron transfer from $Co^{I\overline{I}I}Co^{I\overline{I}I}(DPX)^{+}$ to O_{2} in the case of $Fe(C_5H_5)_2$ to the reaction step which has nothing to do with $Fe(C_5Me_5)_2$, HClO₄ or O₂. Such a process in which no electron-transfer process is involved is most likely to be O– O bond cleavage of the Co^{III} – O_2 – Co^{III} complex in Scheme 5. The O–O bond cleavage rate is determined to be 320 s^{-1} from the slope in Figure $4b$.²⁹

Two-electron Reduction vs. Four-electron Reduction of Dioxygen by Twoelectron Reductants

When one-electron reductants (ferrocene derivatives) are replaced by two-electron reductants such as NADH analogs, 9-alkyl-10-methyl-9,10-dihydroacridines (AcrHR: $R = Me$, Et, and $CH₂COOEt$), the four-electron reduction of $O₂$ is catalyzed by $Co_2(DPA)$ to yield 9-alkyl-10-methylacridinium ion $(AcrR⁺)$ and H₂O (Scheme 6).³² In the case of $R = Bu^t$ and CMe₂-COOMe, however, the catalytic reduction of O_2 by AcrHR results in oxygenation of the alkyl group of AcrHR rather than the dehydrogenation to yield 10-methylacridinium ion $(AcrH⁺)$ and ROH (Scheme 6).³²

In the case of $AcrH₂$, the initial slow electron transfer from AcrH₂ to the Co^{III}–Co^{III} complex is followed by the C(9)–H cleavage to produce AcrH in competition with the back electron transfer from the Co^{III} - Co^{II} complex to $AcrH_2$ ⁺⁺.^{32,33} The catalytic rate-determining step is deprotonation of $AcrH_2$ ⁺⁺. Thus, the $Co^{III}-Co^{II}$ complex reacts rapidly with O_2 and H^+ to give the $Co^{III}Co^{III}$ (O_2H) complex, and this is followed by rapid electron transfer from AcrH⁺ to the $Co^{III}Co^{III}$ ⁺ O_2H) complex to

Figure 4. (a) Time profiles of formation of $[Fe(C_5Me_5)_2]^+$ monitored by absorbance at 700 nm in the four-electron reduction of O₂ by Fe(C₅Me₅)₂ [2.5 × 10⁻⁴ mol dm⁻³ (○), 4.0 × 10^{-4} mol dm⁻³ (...)], catalyzed by Co₂(DPX) $(8.0 \times 10^{-5}$ mol dm⁻³) in the presence of 0.05 mol dm⁻³ HClO₄ in PhCN at 298 K.²⁹ (b) Plot of the zero-order rate constant vs. $[Co₂ -$ (DPX)].²⁹ (c) Plot of the zero-order rate vs. $[HClO₄]²⁹$ (d) Plot of the zero-order rate vs. $[O_2]^{29}$

Scheme 6. Catalytic dehydration vs. oxygenation of the R group of AcrHR with $Co₂(DPA).³²$

produce AcrH^+ and the $\text{Co}^{\text{III}}\text{Co}^{\text{III}}(^{\bullet}O_2\text{H})$ complex. After deprotonation, the μ -peroxo Co^{III}–O₂–Co^{III} complex is formed as the case of the catalytic four-electron reduction of O_2 by ferrocene derivatives.²⁹ The heterolytic O–O bond cleavage of the Co^{III} – O_2 – Co^{III} complex affords the high-valent cobalt(IV)oxo porphyrin π -radical cation, which is readily reduced by AcrH₂ in the presence of proton to yield H_2O , accompanied by forma-

Scheme 7. Mechanism of the catalytic oxygenation of the R group of AcrHR by O_2 with a cofacial cobalt porphyrin.³²

tion of $AcrH^+$.

As the case of the catalytic reduction of O_2 by ferrocene derivatives, monomeric cobalt porphyrins catalyze only the two-electron reduction of oxygen by $AcrH₂$ in the presence of H^+ .³⁴

In the case of AcrHBu^t, the mechanism of the catalytic four-electron reduction of O_2 , accompanied by the oxygenation of Bu^t, is modified as shown in Scheme $7³²$ The initial electron transfer from AcrHBu^t to the Co^{III} – Co^{III} complex results in the homolytic $C(9)-C$ bond cleavage to produce Bu' and AcrH^{+ 35,36} Since the homolytic C(9)–C bond cleavage is also the catalytic rate-determining step, the $\mathrm{Co^{III}Co^{III}}(\mathrm{`O}_2\mathrm{H})$ complex is formed by the reaction of O_2 and H^+ , followed by electron transfer from Bu' to the $Co^{III}Co^{III}($°O_2H$) complex to produce$ Bu'^+ and the $Co^{HI}Co^{HI}(°O₂H)$ complex. The subsequent step may be the same as the case of the four-electron reduction of O₂ by AcrH₂. The high-valent cobalt(IV) oxo porphyrin π -radical cation is formed by the heterolytic O–O bond cleavage of the Co^{III} – O_2 – Co^{III} complex, being reduced by AcrHBu' in the presence of H^+ to yield Bu'OH, accompanied by formation of Acr H^+ (Scheme 7). However, Bu' produced in the initial electron transfer from AcrHBu' to the Co^{III} – Co^{III} complex is readily trapped by O_2 to give the peroxyl radical Bu'OO'. Such alkylperoxyl radicals (ROO) are regarded as rather strong one-electron oxidants judging from the highly positive oneelectron reduction potentials. 37 Thus, the initial electron transfer from AcrHBu' to the Co^{III} – Co^{III} complex is followed by the subsequent electron transfer from the $Co^{III}-Co^{II}$ complex to Bu^tOO' to produce Bu^tOOH after protonation, accompanied by regeneration of the Co^{III} – Co^{III} complex (Scheme 7).

Summary

The combination of metal ion-coupled electron transfer (MCET) and proton-coupled electron transfer (PCET) plays an essential role in the catalytic reduction of oxygen. The selective two-electron reduction of O_2 by ferrocene derivatives occurs with a monomeric cobalt porphyrin, whereas the selective four-electron reduction of O_2 occurs with a cofacial dicobalt porphyrin. The four-electron reduction of O_2 by AcrHR is also catalyzed by a cofacial dicobalt porphyrin efficiently via electron transfer from AcrHR to cofacial dicobalt porphyrins, followed by the $C(9)$ –H and $C(9)$ –C bond cleavage of AcrHR^{$+$} depending on the type of R, leading to the dehydration and oxygenation of AcrHR, respectively. In each case, the formation of the μ peroxo Co^{III} – O_2 – Co^{III} complex via MCET is crucial for the four-electron reduction of $O₂$.

References and Notes

- 1 S. Fukuzumi, in Electron Transfer in Chemistry, ed. by V. Balzani, Wiley-VCH, Weinheim, 2001, Vol. 4, pp. 3–67.
- 2 a) S. Fukuzumi, Bull. Chem. Soc. Jpn. 1997, 70, 1. b) S. Fukuzumi, Org. Biomol. Chem. 2003, 1, 609. c) S. Fukuzumi, Bull. Chem. Soc. Jpn. 2006, 79, 177. d) S. Fukuzumi, Pure Appl. Chem. 2007, 79, 981.
- a) S. Fukuzumi, S. Itoh, in Advances in Photochemistry, ed. by D. C. Neckers, D. H. Volman, G. von Bünau, Wiley, New York, 1998, Vol. 25, pp. 107–172. b) S. Fukuzumi, S. Itoh, Antioxidants and Redox Signaling 2001, 3, 807.
- 4 C. J. Chang, M. C. Y. Chang, N. H. Damrauer, D. G. Nocera, Biochim. Biophys. Acta 2004, 1655, 13.
- 5 J. M. Mayer, I. J. Rhile, Biochim. Biophys. Acta 2004, 1655, 51.
- 6 G. T. Babcock, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12971.
- 7 a) M. Wikström, K. Krab, M. Saraste, in Cytochrome Oxidase: A Synthesis, Academic Press, New York, 1981. b) S. Ferguson-Miller, G. T. Babcock, Chem. Rev. 1996, 96, 2889.
- 8 a) M. M. Pereira, M. Santana, M. Teixeira, Biochim. Biophys. Acta 2001, 1505, 185. b) D. Zaslavsky, R. B. Gennis, Biochim. Biophys. Acta 2000, 1458, 164.
- 9 S. Yoshikawa, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, E. Yamashita, N. Inoue, M. Yao, M. J. Fei, C. P. Libeu, T. Mizushima, H. Yamaguchi, T. Tomizaki, T. Tsukihara, Science 1998, 280, 1723.
- 10 L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104, 1013.
- 11 a) T. Chishiro, Y. Shimazaki, F. Tani, Y. Tachi, Y. Naruta, S. Karasawa, S. Hayami, Y. Maeda, Angew. Chem., Int. Ed. 2003, 42, 2788. b) J.-G. Liu, Y. Naruta, F. Tani, Angew. Chem., Int. Ed. 2005, 44, 1836.
- 12 a) E. E. Chufán, S. C. Puiu, K. D. Karlin, Acc. Chem. Res. 2007, 40, 563. b) E. Kim, E. E. Chufán, K. Kamaraj, K. D. Karlin, Chem. Rev. 2004, 104, 1077.
- 13 a) J. P. Collman, R. Boulatov, C. J. Sunderland, in The Porphyrin Handbook, ed. by K. M. Kadish, K. M. Smith, R. Guilard, Elsevier Science, USA, 2003, Vol. 11, pp. 1– 49. b) J. P. Collman, R. Boulatov, C. J. Sunderland, L. Fu,

Chem. Rev. 2004, 104, 561.

- 14 F. C. Anson, C. Shi, B. Steiger, Acc. Chem. Res. 1997, 30, 437.
- 15 S. B. Adler, Chem. Rev. 2004, 104, 4791.
- 16 R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Chem. Rev. 2007, 107, 3904.
- 17 S. Fukuzumi, K. Ohkubo, J. Am. Chem. Soc. 2002, 124, 10270.
- 18 S. Fukuzumi, K. Ohkubo, Chem.—Eur. J. 2000, 6, 4532.
- 19 S. Fukuzumi, T. Suenobu, M. Patz, T. Hirasaka, S. Itoh, M. Fujitsuka, O. Ito, J. Am. Chem. Soc. 1998, 120, 8060.
- 20 R. N. Bagchi, A. M. Bond, F. Scholz, R. Stösser, J. Am. Chem. Soc. 1989, 111, 8270.
- 21 W. Känzig, M. H. Cohen, *Phys. Rev. Lett.* **1959**, 3, 509.
- 22 H. R. Zeller, W. Känzig, *Helv. Phys. Acta* 1967, 40, 845.
- 23 P. H. Kasai, J. Chem. Phys. 1965, 43, 3322.
- 24 J. H. Lunsford, Catal. Rev. 1974, 8, 135.
- 25 K. Dyrek, M. Che, Chem. Rev. 1997, 97, 305.
- 26 S. Fukuzumi, S. Mochizuki, T. Tanaka, Inorg. Chem. 1989, 28, 2459.
- 27 D. T. Sawyer, T. S. Calderwood, K. Yamaguchi, C. T. Angelis, Inorg. Chem. 1983, 22, 2577.
- 28 K. Ohkubo, S. C. Menon, A. Orita, J. Otera, S. Fukuzumi, J. Org. Chem. 2003, 68, 4720.
- 29 S. Fukuzumi, K. Okamoto, C. P. Gros, R. Guilard, J. Am. Chem. Soc. 2004, 126, 10441.
- 30 K. M. Kadish, L. Frémond, Z. Ou, J. Shao, C. Shi, F. C. Anson, F. Burdet, C. P. Gros, J.-M. Barbe, R. Guilard, J. Am. Chem. Soc. 2005, 127, 5625.
- 31 K. M. Kadish, J. Shen, L. Frémond, P. Chen, M. E. Ojaimi, M. Chkounda, C. P. Gros, J.-M. Barbe, K. Ohkubo, S. Fukuzumi, R. Guilard, Inorg. Chem., in conribution.
- 32 S. Fukuzumi, K. Okamoto, Y. Tokuda, C. P. Gros, R. Guilard, J. Am. Chem. Soc. 2004, 126, 17059.
- 33 S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka, J. Am. Chem. Soc. 1987, 109, 305.
- 34 S. Fukuzumi, S. Mochizuki, T. Tanaka, Inorg. Chem. 1990, 29, 653.
- 35 S. Fukuzumi, Y. Tokuda, T. Kitano, T. Okamoto, J. Otera, J. Am. Chem. Soc. 1993, 115, 8960.
- 36 S. Fukuzumi, K. Ohkubo, Y. Tokuda, T. Suenobu, J. Am. Chem. Soc. 2000, 122, 4286.
- 37 S. Fukuzumi, K. Shimoosako, T. Suenobu, Y. Watanabe, J. Am. Chem. Soc. 2003, 125, 9074.